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Abstract

This paper describes an artificial neural network architecturg which implements
batch-LMS algorithms. The patterns are stored in the network in the form of
interconnection weights, while the convergence of the learning procedure is based on
Steepest Descent algorithm. The objective is to find a set of weightq so that the sum of
the squares of the errors is minimized. In this pEper we show that by using an adaptive
learning rate, the network implements the Steepest Descent method of numerical linear
algebra for solving linear systems of equations. With the application of Delta Rule in
the learning procedure the system of normal equations is solved and the set of weights
generated by the learning procedure satisfies convergence to the optimal least squares
solution for all kinds of systems (norma[ overdetermined or underdetermined), while
the number of iterations needed for convergence is significantly decreased. Extension
to matrix inversion is also presented and convergence behaviour and performance by
computer simulations are discussed.

L INTR,ODUCTION

Feedforward artificial neural networks have been studied extensively and have been
proved capable of solving a wide variety of problems t5}tl2ltlzl Most applications of
these networks use some type of training procedure in order to utilise associations of
input patterns to output patterns. These relations can be either auto-associative or
hetero-associative, i,e. they correlate I set of patterns either to themselves or to another
set of patterns.

Recently, many feedforward neural networks architectures with linear neurons for
solving systems of linear equations and matrix algebra problems have been studied and
implemented tlOl-tllltl3ltl9l-t20l rhe matrix algebra problem is represented with
some architecture and a training algorithm (usually Back-Propagation [16]) is used, so
that the network matches the desired patterns, and the solution to the problem is given
by the trained weights of the network. In the above architectures, the networks oittOF
tllltl3}tlgl are two-dimensional (2-D) whereas the network t20l is three-dimensional
(3-D)' a fact that introduces a higher degree of parallelisrn When used for linear
system equation solving the networks in [O]-[lU use a simple architecturg with n
input neurons and I output neurorU whereas the network [3] (called Orthogonalized
Back Propagation) uses n input neurons, a hidden layer with m neurons, and I output
neuron. The networks Il9F[20] are applied for finding the inverse of matrix A and a
network.with n input neurons, a hidden layerbith n neuron$ and n output neurons
is used in [l9] while the network [20] uses n networkg each one having n input
neurons, a hidden layer with n neurons, and n output neurons. The lines of ihe matiix
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involved in the matrix algebra problem are presented to the networks [0F[l] while in

ll3ltl9l-t201 the matrix involved is stored in the network in the form of
interconnection weights and linearly independent input vectors are applied. The
network in [U is limited to linear systems with matrix A assumed to be Symmetric
and Positive Definite (SPD), in ll9Ft20l matrix A is assumed to be square and the
network is used for finding the inverse of matrix A, while in [0][l3l matrix A can be
of any kind. All the above architectures use the linear activation function, while in the
training procedures the learning rate can be stochastic tl[tlgl or adaptive [l0ltl3[t20].

In this paper the development of a simple two-layer feedforward neural network
with linear neuron functions is studied. The emphasis is placed in the fact that the
proposed architecture solves all types of linear equation systems, since the learning
procedure generates the system of normal equations yielding a least square solution.
The procedure used is the error function gradient, and it takes two forms: in the first

alternative, the learning rate or stepsize cr is determined in a heuristic way, hence the
Heuristic Steepest Descent (HSD) algorithm; in the second and better alternative the
stepsize a is adaptive yielding the Adaptive Steepest Descent (ASD) algorithm. The
network is trained with vector b as targetq and without using the matrix A as inputs,
since the matrix A with the patterns is stored as weights in the network. The trainable
weights i.e. the vector x are updated, until the network converges, i.e. the outputs of
the network match the desired patterns, and the final trainable weights give the
solution of the problem.

The material is organised as follows. In Section 2 we formulate the problem along
with the optimal solution (using pseudo-inverse), and discuss various algorithms and
associated neural network architectures for obtaining estimates of the optimal solution
vector x, such as the Least Mean Square (LMS) algorithrn, both the incremental and
batch version, tlltSl[0][21]. In Section 3, we introduce the new architecture along with
the heuristic (equivalent to batch-LMS) and the adaptive learning procedure, and
discuss convergence issues. The extension of the method for matrix inversion is also
introduced. In Section d we study a few examples for systems of various dimensions
comparing the convergence behaviour of the above three methodg as it concerns
convergence, the number of iterations, and we compare the solutions of the above
methods to the optimal least squares solution. along with some experimental results.
Finally, in Section 5 we draw some final conclusions.

2. NBUR,AL NBTWORK ALCOR,ITHMS FON, SOLVING SYSTBMS OF
LINBAR. EQUATIONS

Given a matrix AeR"n and a vector bd' the task is to find a vector xeRn, such
that Ax = b. The minimization of. the mean square error, or the cost function

m m m

E(x)= t E, 1xy= l j(af x - b, )' = *I("1* - b, )' = *(e* - b)r 1nx - 6)=]llAx - Ul' <U

i, tt" 
"ritt".ion 

orlptlrnulity. Using i'r"n".u, gradient approach for minimization of a
function, the system can be mapped to the equation

vE(x)=dr14x-bf0 (2)

which is the corresponding system of normal equations ArAx=Arb or Cx=d, with

C =AtA and d=Arb, where C€Rn'n is positive definite and symmetric (i.e.

xtcx>0 for all non-zero x€Rn).For such systems the problem is equivalent to
minimizing the functional E(x)= jxTCx-drx. The minimum value of E(x) is
-]drg-'d achieved by setting x=C-rd. Thug minimising E(x) and solving (2) are
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equivalent problems. The optimal least mean square solution of system (2) by using the

Moore-Penrose generalised inverse A' is defined as

x = A - b  € )

For the overdetermined system Ax=b, with A a (mxn) matrix, the resulting
solution is the Least Squares solution' If r(A)= n, then the least squares solution is

unique, given by

x  =  A 'b ,  w i t h  A*  =1ArA) - rA r  (4 )

where A' is the pseudo-Inverse of the (mxn) matrix A, and satisfies the Moore-

Penrose conditions of A- [4].
For the square or normal system Ax=b, with a square (n x n) non-singular full

rank coefficient matrix A, the solution of (2) is unique. Similarly, the Generalised

Inverse of the(n x n) matrix A, A* defined in (4) is equal to A-r

Fgr  the underdetermined system Ax=b,  wi th A a (mxn) matr ix ,  the resul t ing
solution is one from the infinite least squares solutions.

One approach is to use a hetero-associative one-layer feedforward neural network,
with n inputs and one output neuron (as shown in Figure l), a special case of Kohonen
Linear Associative Memory [61. A better approach is to use the Moore-Penrose

generalised inverse A', a special case of Kohonen Optimal Linear Associative Memory

t7Ft8l The Moore-Penrose generalised inverse A" is calculated, using for example the
Grevil le's recursive algorithm if m>n, and the interconnection weights between the
input layer and the output neuron, i.e. the solution of equation (2) defined from
equation (3), or (4) are encoded to the networlq yielding the optimal least mean square
correlation of A and b.

The above scheme is easy to be implemented, but it needs off-line calculation of the
pseudoinverse. However, pseudoinverse can be adaptivelly approximated with the
network in Figure l. The m lines of matrix A are presented to the network in a
cyclical fashion, and the following LMS learning iterative algorithm t7l[Olt2| is used

for adapting the weights at step t+l (after the i 'h l ine of matrix A has been
presented to the input layer):

x( t+r)  -x( r )  -  a(af  x( ' )  -b,  )a l  =x0)  -  aVE, (x( ' )  )

with VE,(x(')) the instantaneous gradient defined as VE,(x(t))=(afx(')-b,;af,

clerived from E,(x(');= j(alx(')-b,)2, where E,(*t ')) is the cost function for the i 'h

pattern, af the is line of matrix A, and cr the learning rate.

lnput Lrycr Output Lry.r Trridng lht

55r

(5)

8il

Figure l. One-L8yer Structured ANN for Linear System of Equation Solving
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This procedure is repeated for a number of iterationg until the error between
calculated and desired outputs is within acceptable limitg forcing the values xi,
j=1,2,...,n of vector x to converge to an approximate solution of the system (l). It
has been shown [7[[2U that if the learning rate is small and fixed, then the
consequence of the vectors x generated by the LMS algorithm converge to some
matrix close to the optimal solution of the system (l).

The batch version of the LMS algorithm [1][5] uses the total gradient VE(x(,))

instead of the approximate VE,(xt").ln this version, the contributions to the gradient

VE,(x(')) from the m different patterns (the m lines of matrix A) are calculated

and summed in order to obtain the total gradient VE(x(')). The learning procedure for

xf ' * l ) ,  k  - -1,2, . . . ,n  at  t ime t+ l  has the form * [ ' * ' )  =x[ ' )  +c6( ' ) ,  wi th 6( ' )  def ined as

6(') = Ar(b-Ax(')1 =4t5-ArAx('), and the adaptation of the weights has the form

x (t{ r) -x(r) +C[6(t) -x(t) + CrA'r 0_Ax(t) ) =;tt) _ crAr 1Axr,l _6) -*,, _ CrVE(x(,) ) (6)

The values x*, k=1,2,...,n of vector x converge to the solution of the system of
normal equations (2), which minimises the residual error.

3. NEURAL NBTWORK AR,CEITBCTUR.B FOR FAST BATCE.LMS

The LMS learning algorithm is an inexact version of the deterministic gradient
descent algorithm. The gradient of the objective function E(x) is approximated by the
gradient of an individual error function E,(x) for pattern i. Thus, the weight vector
x is updated along the gradient direction of E,(x), a crude gradient estimate in place
of the true gradient of E(x), which is difficult to obtairL since it involves averaging
the instantaneous gradients associated with all patterns (the lines of matrix A ). As a
result" the total error E(x) may not decrease, (in some cases it may increase) and the
convergence is very slow. In addition, the procedure converges to an approximate
solution of the system 121.

We propose a new architecture, better than LMS for the same values of the learning
rate. The network representing (2) is shown in Figure 2 As it can be seeq it is a two-
layer structured neural network consisting of two layers: a hidden layer with n
neurons, each one connected with the neuron of the input layer, and an output layer
with m neurons, fully connected with the hidden layer (the input layer with 1 neuron
is not considered as a distinct.layer). As an alternativg instead of using the input
neuron, we could use a bias threshold connected to every neuron at the hidden layer
and discard the input neuron.

Input Laycr Hiddcn Layer Output Lsycr

i

i

I

I

Figure 2. T\rc-Layer Structured ANN for Linear System of Bquation Solviog
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The network uses the gradient descent algorithm [6] for minimising the residual

error. The algorithm works as follows: starting at an arbitrary point x(o), a sequence of

improved approximations X('), X(') 
"." 

is generated such tha! for t >0,

x(t 'r)-x()+cr(- VE(xo)), where - VE(x(')) is the descent direction defined in (2) and

a is the stepsize. The stepsize ct can be constant (determined in a heuristic way), as in
tlltlUtl6ltl9| simulating the steepest descent method with heuristic line search, which
leads to a classical Back-propagation algorithrnn or adaptive during time, as in
tloltl3lt20} simulating the steepest descent method with exact line search.

We define woj= xj, i=1,2,...,n to be the synaptic weight incoming to the hidden

layer neuron j from the input neuron, so the connections of every hidden layer neuron
j (l< j < n) with the input neuron is the.corresponding js value of a vector x, of size
n ( the solut ion of  the system),  and w; i  =ai j ,  l< j<n,  l< iSm to be the synapt ic

weight incoming to the output layer neuron j from the hidden layer neuron i, to be

the corresponding i 'n row of matrix A.

Comment 3.t A disadvantage of the proposed architecture is that the number of
neurons and weights is significantly increased if the number of patterns (the size of
matrix A ) is too large. In this .case, we can use block-LM$ with k blocks using an

architecture havinc I ! | n"u.nn..- t k l

3.L Thc Ecuristic Stccpcrt Dcrccnt (HSD) Lcaralng Algorithn
The training procedure is as follows: Initially, the interconnection bias weights, x1,

j=1,2,...,n take random values in (-1, l). An input with the value of I is presented in

the input neuron and the corresponding outputs u!')=(x!'))=xj') j=1,2,...,n of the

hidden layer neurons are calculated, with ( ) the simple identity function for neuron
j, x, the connection between the input neuron and the hidden layer neuron j, and

t the step of updating (t = 0,1...). Then, the actual outputs y, for every output layer
neuron i (i =1,2,...,m) at t ime t are calculated

y1')=(lul ')w
j = l

The discrepancy between desired and calculated output, i.e. the difference between b,

and yl '), for i=1,2,...,m is calculated by means of the Delta Rule

d|"  = b,  -  y : " ,  i  =1,2, . . . ,m (8)

Since the connections between the hidden layer and the output layer is the matrix A,
those connections are constants, and remain unchanged.

Following the back-propagation procedure [6] the calculation of 61, k=1,2,...,n
for the hidden layer has the form

6f '}=f w[ ' ]df" =I", ,dl",  k =1,2,. . ,n

(7)
n n

i' )=(I *1" 
",, )= | a.; xj')

j =  |  j = l

(e)
i = l

The weight adaptation procedure only for the input weights (since input is always l)
has the form
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*lJ*') = x[ ')  +o6['),  k =l '2,. ' . ,n ( lo)

where cr is the learning rate.
This procedure is repeated for a number of iterationg until the error between

calculated and desired outputs is within acceptable limits. The convergence of the
above algorithm is proved by the following theorem:

TEBORBM 3.L The operation of the ANN in Figure 2 using the HSD algorithm
converges to the Least Squares solution of the linear system (2).

Pr<lof. The value of 6[), (k =1,2,...,n ) at step t, using (7),(8),(9) will be

6[ ' )  = f  a ,*df ' ,  = t "n(b,  -y l ' , )  = ian(b,  - iau* ; ( ' , )= i " , *  b ,  - i "n iau* , ( , , { r t )
i = r  i = l  i = l  j = r  i = t  i - t  j = l  '

or in matrix - vector form

6(, )  =Ar(b_Axar l  _Arb_ A rAx( t )

The value of  x [* ' ) ,  (k=1,2, . . . ,n)  at  s tep t+1,  us ing ( l l ) , (12)  wi l l  be
m m n

= xr( ' )  +a( la,*b, - Iunlx,( ' )au),  or in matr ix -  vector form

*u.,, -*u,*o]n'6-tr'it 1 =., - 
"O',Ox(,)-b) 

=1{t) - syBl*{t);

(r2)

*[ '*" = x[t) +'6[')

(13)

(14)

which is identical to equation (9) in the batch-LMs algorithnl so the values x*,
k=1,2,...,n of vector x converge to the solution of the system of normal equations (2),
which minimises the residual error (i.e. l im,--(E(x('));=0, if ff i  ( tr, or

l im,- - (E(x( ' ) ; ;  becomes minimum, i f  m>n).

3.2. Thc Adaptivc Stccpcst Dcrccat (ASD) Lcarning Algorithm
The disadvantages of the HSD algorithm is that its convergence rate is very slow,

compared to algorithms that use adaptive stepsize cr as in tlO}tl3l[2Ol with neat
convergence properties. Using the same architecture and training procedure as in HSD,
the new learning procedure differs from HSD in that the weight adaptation procedure
instead of  (10)  for  the input  weights wi l l  be 

" [* "=x[)+o( t+r)6( t ) ,  
k=1,2, . . . ,n  9r  in

Vectof form X(,*l) =X(t)+ Cf 
(t l l)6(t) With

where 6(') is defined in (l2I the residual error of solving the corresponding system of
normal equations (2).

This procedure is repeated for a number of iterationg until the error betweeJr
calculated and desired outputs is within acceptable limits. The convergence of the ASD
algorithm is proved by the following theorem:

TEBORBM 3.2. Using c,('*r) defined in (14) the ANN of Figure 2 simulates the
Steepest Descent Method.
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Proof. with E(x) defined in (l), from (2) we have

VE(x)=Q1-d=AtAx -Atb

Using (15), 6(') defined in (14) becomes

6,"  =At  b-AtAx( t )  =d-Cx(t )  -  -VE(x( t ) )

I f  we choose o( t* ' )  to  min imise E(x{ t* t l ; -  E(x( t )  ag( t* t )6t t )1,16en 6t( t * r )

equation VE161r'*'r)=0. By the chain rule using (15),(16) we have

555

(15)

(16)

is given from

(19)

solution can be

VE(x( , ' r ) )=  VE(x( , )  +c t ( t+ r )6 ( t ) )  =  VE(x( ' )  +c [ ( t+ r )6 ( t ) )6 ( t )  - [C(x ( t )  +c t ( t * r )6 ( t ) ) -  d ]6 ( t )

= [g ; { ' r  +c [ ( t } r )C6( t )  -  dp t t l  = [c [ ( " r )C6( t )  -6 ( t ) ]6 ( t )

By setting VE(o('- '))=0, we can see that 61(t*r) is given by

defined in equation (14), QED.

THEORBM 3.3. Using cr('*r) definecl in

Optimal Steepest Descent Method [5] used
t18l

i l  ,., [2

,,.,, llvE(x"')llCfopr -5zg11. l ; y [111{D;vg1x0)

Proof. From (15) we have

V'E1x( ') ;= V(VE(x( ' )) ;= V(Cv<'r  -  d)= C

and using (15),(18), ., jl" b."ornu,

cr(t+,)-ff i,.,

(14), the ANN of Figure 2 simulates the
in back-propagation, with cr(t*r) given by

(17)

(18)

llorr.'ll' 6(t)6(t)
Goo,  =

vElx(') 1V2 E(x(') )VE(x(') )
= 

(-6(')cG69 
= 

6(')c6(o

as in equation (14), QED.

3.3 Matrix Invcrrlon
The method that have been previously discussed for linear system

extended to cover the solution of matrix equations

A X = B (20)

where A,X and B are (m x n), (n x k ) and (m x k) matrices. Equation (20) can be
seen as a set of m systems of linear equations with common coefficient matrix A.
The problem can be partitioned in solving k systems of linear equations formed by
using the k columns of matrix B. Thus, using k times the ANN of Figure 2, we can
generate the k columns of matrix X. Another alternative is to use a 3- D ANN with
k NNs of Figure 2, in order to solve those equations. Notice that matrix A is stored in

ll- u'll'
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the connections between the hidden and the output layer of all NNs involved, since the
coefficient matrix is the same for all systems. The configuration involves k NNs
working in paralle[ as shown in Figure 3 with the same learning procedures in all
methods presented for every 2- D ANN. A special case of the matrix equation
problem is the solution of the system

AX=I

for A,X (nxn) matrices and I the (nxn) identity matrix. Therq the solution is

X= A-r. Thuq it is possible to use n NNs of Figure I in orrter to invert a matrix A.

@,

@,

Input Layer Hidden Layer Output Layer

Figure 3. TweLayer 3.D Structured ANN for solving AX=B

4. BXPER,IMBNTAL N.BSULTS

To check the performance and the convergence behaviour of the proposed
algorithms for solving system Ax=b, we used some specific exampleg and compare
the solutions to the least square (LS) solution. Alsq we have drawn the corresponding
graphs showing the convergence (with respect to the minimisation of the Mean Squaie
Error) of the three algorithms through time in a VAX 42fi) machine.

Bxamplc t The square linear system of equations to be solved is :

(2r)

:"8
l.E
:=f
q, r------*lr_l
h, r-r*L1J
b-r--r
e1 '__l

:

hr r-r.-Lll
b, r---r{-L1l
bnrf------'l

'-L'"l

Training Set

!p

Yy

Y-r

Irr

Yrr

tnr



l t ,  o8 o7 o5l  fx, l  [ , . l
104 ls  03 o . t  I  l x ,  l_ lz  I
lo '  os t7 oe | 1.. l- lr  I
L0 I  05  06  t 2 l  [ x " J  L4J

Civen zero init ial values to the synaptic weightg and using
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E(x) = llnx- bll' (n)

as the total mean square error, the same used by Wang L.X. and Mendel J.'[20] the
convergence behaviour of the above training algorithms is shown in Figure d where
the horizontal axis denotes the training cycle t and the vertical axis the mean square
error given in (23). With e = l0-s, ASD algorithm converges in 50 training cycles to the
solution

Xrso = [x,,xr,xr,xo]r = [-t . :oot+, l .sl3z4, -o.lz3zg, 2.870851r

with

rnro = 
[r,, rr, rr, rn ]t 

= 
[o.ooo+0, 0.0001 0, - 0.00078, 0.00T5]r

which is close to the exact least squares solution of system (22)

x," = [-1.29991, 1.51346, -0.12535, z.Ba7zlr e4)

obtained by using Greville's algorithrq and better than the estimation obtained by
Wang L.X. and Mendel J. [20]

x = [ - l .21653 ,  1.470s3,0.16055,  2.35300]r

r = [o.oos+t, 0.00265, 0.00465, 0.00215]r

Given zero initial values to the synaptic weights, and using cr= 0.01 as learning rate for
LMS and HSD, HSD algorithm (which is.equivalent to the batch-LMs method)
converges in l35l training cycleq with e = lO", to the solution

xHsD = [-t.zera, r.sl3zg, -0.12241,2.870131r

r"r,, = [-0.00003, 4.00023, -0.00r6?, 0.00265]r

whereas incremental LMS algorithm converges in 1341 training cycleg with e = 10-5, to
the solution

XLr*rs =[-t.:oooz, 1.51330, -0.12242,2.s2016]r

rr*r, = [-0.00001, 
-0.00024, -0.00168, 0.0026llr

Conncnt 4.t In order to allow a more meaningful comparison between the
incremental LMS method and HSD (or the equivalent batch-LMS method) one learning
step of incremental LMS algorithm is taken to mean a full cycle through the m
samples (the m lines of matrix A ).

Conncnt 4.2 As it is shown in Figure d the.behaviour of the incremental LMS and
HSD method is similar and the number of iterations needed for LMS and HSD to
converge is almost the same as stated in [][2ll whereas with the application of ASD

(22\
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algorithm the mean square error is decreased rapidly, and the number of iterations
needed for convergence is too small compared to the other two methods.

Conncnt 4.3: For e = l0-e the above algorithms converge to the least square solution
(24) of the system (22) but the number of iterations needed to converge is increased.

100

t ra in ing  cyc le  t

Figure 4. Convergence behaviour of LMS, HSD, and ASD for square linear system in Example I

Exanplc 2 z The underdetermined linear system of equations to be solved is:

1000

lz -l 4 o 3
l r  l  -3  |  2
f r -zr-s-r

r'l
I0l

4)

x l

x 2

X-r

X .

x r

x 6

(2s)=f?l
L-41

Civen zero init ial values to the synaptic weights, and using E(x)=*llAx-b[2 for the
total mean square error, as defined in (1), the convergence behaviour of the above
training algorithms is shown in Figure 5, where the horizontal axis denotes the training
cycle t and the vertical axis the mean square error given in (l). With t - l0-5, ASD
algorithm converges in 8 training cycles to the solution

XnsD = [o.ortzo, 0.10826, 0.27321, 0.50457, 0.3827s, - 0.309651r

ro"o = [o ooo29, o.ooool, - 0.000z6]r

which is a close estimation of the exact least square solution of the system (25), and
close to the estimation achieved by Cichocki and Unbehauen [31

x = [o.oasz, 0. r 083, 0.2733, 0.5047,0.3828, - 0.3097]r

Given zero initial values to the synaptic weightg and using cr= 0.01 as learning
cogfficient for HSD and LM$ HSD algorithm converges in 24 training cycleg with e =
l0-5, to the solution

xnso = [o.osarz, 0. r0832, 0.27278, 0.s0444, 0.382s4, - 0.30960]r

r , ,"o = [0.00254, -0.00112, -0.00133]r

whereas LMS converges in 23 training cycleq with e = 10-s, to the solution
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xLMs = [o.oaazz, 0.10834, 0.2729t, 0.50451, 0.38255, -0.30965]r

rr^r, = [0.00256, -0.00085, -0.00071]r

l 0

t ra in ing  cyc le  t

I

100

Figure 5. Convergence behaviour of ASD, HSD, and LMS for underdetermined linear system for
Example 2

Bxanplc 3: The overdetermined linear system of equations to be solved is :

l-r l l  l-r l
t t t l
l l  z l - .  l l l
I  l t x , t  I  I
l r  3 l . l  '  l = l2 l  (26 )
l r  a lLxzJ l r l
t t t l
Lr sl L3J
Since system (26) is overdetermined the application of the algorithms will give a least
squares solution, which minimises the mean square error defined in (1) but it will never
be zero. Thus, we use the following convergence criterion

12
l0
8

E(x)  6
4
a

0

a" =ll*,,, ' , - *,,,11, =i1*1,',, - *1,r1< l0-j (27)
j = l

in order to terminate the algorithmg with t=Ql,- the training cycle. The convergence
behaviour of the above training algorithms is shown in Figure 6, where the horizontal
axis denotes the training cycle t" and the vertical axis the mean square error given in
(l). With 6 = lO-s, given zero initial values to the synaptic weightg ASD algorithm
converges in 4 training cycleg with E(x) = 0.20(XX), to the solution

x,rso = [*,, ",]t 
= [o.2oooo, o.6oooolr

which is in excellent agreement with the exact least squEre solution of the system (Zi)

xr, =[x,,xr]t =[o.2oooo, o.6oooolr (a)

obtained by using Greville's algorithm. The residual vector of the ASD solution is

roro = 
[r,, rr, rr, rn, t, ]t = [-0.20000, 0.40000, 0.00000, - 0.40000, o.20ooo]r

This solution is better than the estimation achieved by Cichocki and Unbehauen [2]
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x = [o.zoo, o.ses]r
r = [-0. 196, 0.402, o, - 0.402, o. I 96lr

Given zero initial values to the synaptic weightg and using cr= 0.01 as learning
coefficient for HSD, the algorithm converges in 4ll training cycleq with Elx; =
0.20000, to the solution

XxsD = [0. teloe, 0.60025lr

r"ru =[-0.20066, 0.39959, -0.00015, -0.39990, 0.200351r

Given zero initial values to the synaptic weightq and using cr= 0.01 as learning
coefficient for LM$ the algorithm converges in 456 training cycles, with E(x) :
0.22634, to the solution

XLr.rs = lo.zzzst, o.59o8olr
r,."" = [-0. I 86 22,0.40459.-0.0046 l,-0.4 I 38 1,0. I 7699]r

t r a i n i ng  cyc l e  t

Figure 6. Convergence behaviour of ASD, HSD, and LMS for overdetermined linear system for
Example 3

Conmcnt  4.4: , l f  we use A*=l l * t ' - " -* t " l l ,  <10-e instead of  (27)  for  HSD and LMS

algorithnr, HSD converges to the least square solution of the system (26) in 1502
training cycles, while the solution of LMS is getting worsg increasing the training
cycles and the residual error.

Dircumion: For square and underdetermined linear systems of equations as in (22),(25),
all three algorithms for small values of the learning rate (used in HSD and LMS)
converge to the same and only solution (the Least Square solution A-'b for square

systems or A-b for underdetermined) or a close estimation of the Least Square
solution. For such systems, the performance of ASD algorithm is better than HSD and
LMS (the number of iterations needed for ASD in order to converge is very small
gompared t0 the others).

For overdetermined linear systems of equations as in (2i), only ASD converge to the

Least Square solution A*b using the total error as defined in (l). HSD and LMS

converge to an approximation of A'b, with HSD giving a better approximation than
LMS. For such systemq the performance of ASD algorithm is better than HSD and
LMS.

Bxanplc 4: Find the pseudo-inverse of the singular matrix
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099493 -0.37772 -0.28277

-0.2676t 0.79883 -0.06353

0.00769 -0.07447 0.80851

0.02377 -0.26244 -0.35240

which is a good estimation of the Least Square solution obtained by using Greville's
algorithm
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Applying the ANN of Figure 3 or the ANN of Figure 2 four timeq and using t1,0,0,01r,
tql0,01r, t0,0,1,0fl tq0,O,Ur as vector b, we can find the four columns of matrix
X = A * .

Given zero initial values to the synaptic weightg and using 9=0.01 as the learning
rate for HSD and LMS, ASD algorithm converges with E = l0-", in 30 training cycles
for column l. in 37 training cycles for column 2, in 36 training cycles for column 3, and
in 40 training cycles for column d to the solution

(29)

I t.z 0.8 0.7 o.5l
I o.+ r.5 0.3 o.r I

A = l  I
l 0 l  o .s  r .7  oe l
Lo' 0.5 0.6 tz)

-0.r7?321
0.0e261 

|-0.6028e 
I

1.r07661

-an2n1
0.0e283 

|-0.60170 
|

1.r0678-l

Xr'so =^- =L

I 
o.eear+ -0.3806e -0.283Ie -0:7177]

X.. =A-, =l-o.z,ezt 0.80037 -0.06314 0.09285 
|

| 
0.006e6 -0.07242 0.81le8 -0.60s8s 

I
L 0.025s3 -0.26sss -0.35608 l.l r ls8 J

(30)

HSD algorithm converges with e = l0-5 in 843 training cycles for column ! in 841
training cycles for column 2, in 1059 training cycles for column 3, and in ll49 training
cycles for column 4 to the solution

XHso = A*

-0.37687 -0.28241

0.79808 -0.06333

-0.07493 0.80786
-0.26215 -0.35099

and LMS algorithm converges with e = 10-s in 834 training cycles for column l, in 83a
training cycles for column I in 1049 training cycles for column 3, and in 1140 training
cycles for column d to the solution

I o.eelsz
| -0.26641

Xr-vs =o'=l 
o.oorno

L 0.02394

-0.37687 -0.2823t -0.t72271

0.7e8r I -0.06334 0.09284 |
-0.07485 0.807e0 -0.60174 |
-0.26227 -0.35107 Ll0686J

The convergence behaviour of the above training algorithms for finding the inverse
matrix of A in Example 4 is shown in Figure 7. As it can be seeg the behaviour of the
incremental LMS and HSD method is similar, Vhile the number of iterations needed
for LMS and HSD to converge is almost the same. with the application of ASD
algorithm the Mean Squared Error is decreased rapidly, and the number of iterations

0.99357

0.02376
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needed for convergence is too small compared to the other two methods. If we use E =

104, the above algorithms converge to the least squere solution (30) of the system (29)
but the number of iterations needed to converge is increased.

06
q5
0,1

F{r} q3
q2
ql
0

q6
q5
0,4

E(r) 0,3
q2
ql
0

0,6
0,5
0,1

D(r) qt
0,2
0,1
0

0,6
0,5
0.4

Ex) 0,3
0,2
0.1
0

Ininin! ctcb t

(c)

tninin! crcL r

(d)

Figure 7. Convergence behaviour of ASD, HSD, and LMS algorithm for column 1(a), column 2 (b), column

3 (c), and column 4 (d) of matrix A for matrix inversion in Example 4

5. CONCLUSTONS

In this paper we discussed the issue of a neural network design and implementation
for solving linear systems of equations. Delta Rule for network training is modified in
order to lead to a batch-LMS algorithnl whereas the use of an adaptive learning rate
implements the steepest descent method. We have proven the capability of the
proposed network for solving any kind of linear systems of equations. We used
numerical examples in order to demonstrate operating characteristics of the proposed
neural network. Simulations was performed to estimate the performancg i.e. the

training cycles required to reduce the mean squared error by a fraction of e=10-s, and
the comparison of the solutions taken to the least squares solution. The fact that
distinguishes our implementation from previous ones is the simplicity of its
architecture and its training algorithrq along with the fact that it exceeds the
limitations of matrix A needed to be SPD. In additioq the ASD training algorithm

proposed with adaptive stepsize cr has neat convergenoe properties and guarantees fast
network convergence to the rlptimal solution for any kind of linear system of
equations but it is hard to be implemented in VLSI circuits because of the off-hne
calculations needed and the size of matrix Ao which can be too large. On the other
hantl, the HSD algorithm (equivalent to batch-LMS) converges for sufficiently small

values of the stepsize o. lTLIzll to a solution close to the optimal solution but
convergence analysis is difficult and its convergence rate is very slow.
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